
Proof that a cellular automaton has a period-two global attractor

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys. A: Math. Gen. 24 1677

(http://iopscience.iop.org/0305-4470/24/7/036)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 14:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 24 (1991) 1677-1679. Printed in the UK 

ADDENDUM 

Proof that a cellular automaton has a period-two global 
at tract or 

P-M Binder 
Department of Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK 

Abstract. We prove by induction that, with certain fixed boundary conditions, 
elementary cellular automaton rule 3 has a period-two limit cycle to which 811 states 
are attracted, regardless of lattice size. 

In a recent letter [I], we proposed a classification of cellular automata (CA) in close 
analogy with discrete dynamical systems. This classification originated from an exten- 
sive numerical study, which left open the question of what happens in the large-lattice 
limit. 

Since the submission of [l], we have made considerable progress in understanding 
rigorously CA rules with a lattice size-independent global attractor. In this addendum 
we present an inductive proof of the existence of such an attractor for a particular 
rule, and comment on other rules. 

We now proceed to define elementary cellular automaton rule 3. In the remainder 
of this paper s will stand for the state of a lattice site, which can be 0 or 1, and S for 
the state of a collection of sites. The overbar stands for logical complement, and the 
dot for logical and. 

Definition 1. The evolution of rule 3 is given by 

In other words, si becomes 1 at t + 1 if it and its left neighbour are zero at  time t ,  
and becomes 0 otherwise. 

Property 1. The state of a site at  t + 1 is independent of the state of its right neighbour 
at  time t .  
The theorem we wish to prove is the following. 

Theorem 1. Under fixed boundary conditions of zero to the left and right of the 
lattice, the rule 3 automaton has a period-two limit cycle which attracts all initial 
states, independently of lattice size. 

In the remainder of this proof fixed boundaries of zero to the left and right of the 
lattice will be implicitly assumed. We also use S‘, s‘ to denote lattice and site states 
a t  time t + 1. 

Proposition 1. The states OL and lL map to each other for all L .  

Proof. Since ~’(000) = 1, then S’(OL) = lL.  Since s’(OlO,Oll,lll,llO) = 0, then 
0 SI( l L )  = OL. This shows that there is a period-two limit cycle for all L. 
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Proposition 2. The state O'-'l maps to 0' after two time steps for all L. 

Proof. S'(OL-'l) = 1'-'0, from definition 1. S'(lL-'0) = O', from definition 1. 0 

We now prove that all states eventually map to 0' for L = 1 and 2, and therefore are 
attracted to the period-two cycle shown in proposition 1. 

Lemma 1. Both onesite states eventually map to 0. 

Proof. Follows from proposition 1, with L = 1. 0 

Lemma 2. All four two-site states eventually map to 00. 

ProoJ S'(O1) = 10, S'(10,l l)  = 00, S'(00) = 11, from definition 1. 0 

Therefore, all states are attracted to  the limit cycle 00-1140.. . 
Proof of Theorem 1. All states of length L + 1 are formed by adding a 0 or 1 to states 
of length L. We now show that, if a state S of length L is mapped to O L ,  the states SO 
and S1 are mapped to O't ' ,  and by proposition 1, to the cycle OL+' - lL+ ' -OL+'  . . . . 

Suppose that S eventually maps to 0' after T time steps. Then, by property 1, 
SO and S1 map to either 0'0 or O L 1 .  In the first case, we have the desired result. 
Furthermore we can say that SO or S 1  map to OL+' after T time steps. In the second 
case, by using proposition 2, we see that SO or 5'1 map to OLt' after T + 2  time steps. 

Since it has been shown (lemmas 1 and 2) that for L = 1 and 2 all states eventually 
map to OL, the above proves that all s' states eventually map to OL for L > 2 as well. 
We therefore know by proposition 1 that all states evolve into a period-two cycle. 0 

The state diagram of this system is peculiar, since all states other than O', 1' are 
injected into the period-two cycle through one state, 0'. In this way, the automaton 
differs from the discretized iterated maps, in which any cycle state can be reached 
fint. 

From lemma 2, which shows that the state 01 takes four time steps to reach the 
limit cycle, and the main proof, we can deduce the following property of the transients. 

Corollary 1. For a lattice of length L the longest transient is 2 ( L  - 1). 

This transient corresponds to the initial state Ol'-' which evolves to O L  in 2 ( L  - 1) 
time steps. The odd-time states correspond to successive shifts to the right of an 
isolated 1 site. From property 1 we see that the proof also applies if a fixed boundary 
condition of 1 is applied to  the right of the lattice. With a fixed left boundary of 1, 
there is also a period-two global cycle, OL - Ol'-' - 0' . . . lemma 1 is then no longer 
true, and the theorem can only be proved strictly for L > 1. 

We have proved that with certain fixed boundary conditions, elementary cellular 
automaton rule 3 has a period-two global attractor independently of lattice size. Such 
behaviour corresponds to a periodic attractor in discretized versions of iterated maps. 
With this work, we have established a novel feature of cellular automata which brings 
them closer to dissipative dynamical systems. 

In [l] a total of 14 rules were found numerically to exhibit lattice sizeindependent 
global attractors of lengths 2, 3, 4 or 6. The present method of proof works for most 
of them. In most cases, the limit cycle consists of left or right shifting of repeated 
(001) or (0011) blocks. 
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